• 搜索
    搜新闻
  • 您的位置: 首页 >  快讯

    可微是什么意思(可微)|快讯

    互联网来源:2023-05-26 03:30:08

    1、证明:由于偏导数在点M(x,y)连续,0<θ,θ<1,α=0,△z=f(x+△x,y+△y)-f(x,y)=[f(x+△x,y+△y)-f(x,y+△y)]+[f(x,y+△y)-f(x+y)]=f(x+θ△x,y+△y)△x+f(x,y+θ△y)△y=[f(x,y)+α]△x+[f(x,y)+β]△y=f(x,y)△x+f(x,y)△y+α△x+β△y而||≤|α|+|β|,所以△z=f(x,y)△x-f(x,y)△y+o(ρ),即f(x,y)在点M可微。

    2、设函数y=f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx),其中A与Δx无关,则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx,当x=x0时,则记作dy∣x=x0。

    3、可微条件必要条件若函数在某点可微分,则函数在该点必连续;若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。


    (资料图片)

    4、2、充分条件若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

    5、扩展资料函数可导的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。

    6、只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

    7、可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

    8、一元函数:可导必然连续,连续推不出可导,可导与可微等价。

    9、多元函数:可偏导与连续之间没有联系,也就是说可偏导推不出连续,连续推不出可偏导。

    10、多元函数中可微必可偏导,可微必连续,可偏导推不出可微,但若一阶偏导具有连续性则可推出可微。

    本文就为大家分享到这里,希望看了会喜欢。

    关键词:

    下一篇: 最后一页
    上一篇: 沥青密度是多少kg1立方 沥青密度是多少